Worksheet, Discussion \#32; Tuesday, 7/31/2018
Instructor name: Roy Zhao

1 Determinants and Inverses

1.1 Concepts

1. The determinant is defined only for square matrices. It is a scalar. The determinant for a 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the number $a d-b c$.
The inverse of a matrix is defined only for square matrices. The inverse of A is a matrix B such that $A B=B A=I$, the identity matrix with 1 s on the diagonal and 0 everywhere else. The inverse is always unique if it exists. The inverse of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the matrix $B=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$. The inverse of a square matrix exists if and only if the determinant is nonzero.
We can use the inverse to easily solve equations of the form $A x=b$ where x, b are vectors and A is a matrix because we can write $x=A^{-1} b$ if A is invertible. This always has a unique solution if A is invertible. If A is not invertible, this is 0 solutions or ∞ solutions.
There are 2 ways to calculate the determinant of a 3×3 matrix $\left(\begin{array}{lll}b_{1} & b_{2} & b_{3} \\ b_{4} & b_{5} & b_{6} \\ b_{7} & b_{8} & b_{9}\end{array}\right)$. The first is expansion along the first row to get the determinant is $b_{1}\left|\begin{array}{ll}b_{5} & b_{6} \\ b_{8} & b_{9}\end{array}\right|-b_{2}\left|\begin{array}{ll}b_{4} & b_{6} \\ b_{7} & b_{9}\end{array}\right|+b_{3}\left|\begin{array}{ll}b_{4} & b_{5} \\ b_{7} & b_{8}\end{array}\right|$. The other is to use the diagonal method to get $b_{1} b_{5} b_{9}+b_{2} b_{6} b_{7}+b_{3} b_{4} b_{8}-b_{1} b_{6} b_{8}-b_{2} b_{4} b_{9}-$ $b_{3} b_{5} b_{7}$.
We can determine the number of solutions to an equation $A \vec{x}=\vec{b}$ by the determinant of A and that is given below.

$\operatorname{det}(A)$	$\neq 0$	$=0$
Number of Solutions	1	0 or ∞

1.2 Problems

2. True False We can take determinants of 2×3 matrices but just haven't learned it yet.
3. True False If A is a noninvertible square matrix, then $A x=b$ may still have a unique solution.
4. True False It is possible for $A \vec{x}=\overrightarrow{0}$ to have no solutions.
5. True False If we know that $A \vec{x}=\vec{b}$ has no solutions, then we know what $\operatorname{det}(A)$ is.
6. True False If $\operatorname{det}(A)=0$, then $A x=b$ has no solutions.
7. Give a 2×2 matrix with determinant equal to 5 . Is it unique?
8. Find the inverses for the following matrices:

$$
\left(\begin{array}{cc}
3 & 5 \\
-4 & -8
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 5 \\
3 & 4
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 5 \\
-1 & -8
\end{array}\right)
$$

9. Find the determinant of $\left|\begin{array}{ccc}3 & 2 & 3 \\ -1 & 5 & -3 \\ 7 & -1 & -1\end{array}\right|$.
10. Let $A=\left(\begin{array}{ccc}2 & 4 & -1 \\ 2 & 2 & 5 \\ 6 & 8 & 9\end{array}\right)$. What is $\operatorname{det}(A)$? How many solutions that $A \vec{x}=\overrightarrow{0}$ have?
11. Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 5 & 1 & 3 \\ 2 & 2 & 4\end{array}\right)$. What is $\operatorname{det}(A)$? How many solutions does $A \vec{x}=\overrightarrow{0}$ have?
12. Find x, y such that $2 x+3 y=4$ and $x+y=1$.
13. Find the solution to $x+2 y=3$ and $4 x+5 y=6$ using matrix vector form.
14. Write $x+y=10, y+z=5, x+z=-1$ in matrix vector form. How many solutions does it have?
15. Find a matrix X such that $\left(\begin{array}{cc}5 & 13 \\ 3 & 8\end{array}\right) X=\left(\begin{array}{ccc}1 & 4 & 1 \\ -1 & 2 & 1\end{array}\right)$.
